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1. Introduction

In the BPZ approach to the two dimensional Conformal Field Theory [l the réle of a
dynamical principle is played by the associativity of the operator algebra involved or,
equivalently, by the bootstrap (crossing symmetry) equation imposed on the correlation
functions. In every specific CFT with known spectrum and three point coupling constants,
validity of the bootstrap equation can be regarded as the basic consistency condition.

Analysis of the bootstrap equation becomes particulary interesting (even if difficult)
for the CFT-s with continuous spectrum. One of a few interacting and solvable models of
this kind is the Liouville Field Theory. Its three point coupling constants have been found
independently by Dorn and Otto [ and by A. Zamolodchikov and Al. Zamolodchikov [J].
The authors of [E] also performed some numerical checks of the bootstrap equation in the
LFT using a recursive representation of conformal blocks developed in a series of papers
by Al. Zamolodchikov [fl-f].



An analytic proof of this equation which combined a Moore-Seiberg formalism of
CFT [ with a representation theory of quantum groups has been presented in [, [].
Using the results on fusion of degenerate representation of the Virasoro algebra the au-
thors of [§, [] derived from the consistency conditions of the Moore-Seiberg type a set of
functional equations for the fusion matrix of the conformal blocks. These equations were
then shown to be satisfied by the Racah-Wiegner coefficients for an appropriate continuous
series of representations of U,(sl(2,R)). Another proof of the validity of bootstrap equation
for the Liouville field theory, which relies on an explicit calculation of the fusion matrix
for the conformal blocks appearing in the LFT by relating it to the braiding matrix of
Virasoro chiral vertex operators, was presented in , EI]

Conformal field theory with N = 1 supersymmetry [I3—[4] is in some sense the sim-
plest generalization of the “ordinary” CFT. Also here the bulk three point coupling con-
stants of the basic interacting model — supersymmetric extension of the Liouville theory
— are known [[[§] and some numerical checks of the bootstrap equation in the Neveu-
Schwarz sector of the theory (which employed a recursive representation of N = 1 NS
blocks developed in [[I6, [[7]) have been performed [I§, [[J]. However, an analytical proof of
the consistency of the N = 1 supersymmetric Liouville theory is still missing.

A step towards such a proof was taken in [R(], where the form of the fusion matrix
for the Neveu-Schwarz superconformal blocks was postulated. If correct, it implies the
bootstrap equation for four super-primary NS Liouville fields. The basic goal of the present
paper is to justify the results of [R{] by calculating explicitly (in the spirit of [I{, [1]) the
braiding matrices of the NS chiral operators and relating them to the fusion matrices of
NS superconformal blocks.

The paper is organized as follows. In the section J] we briefly discuss the Neveu-Schwarz
algebra and recall the basic facts on the N = 1 supersymmetric Liouville field theory. This
section is in a sense introductory and mainly meant to establish a convenient notation.
In the section P we discuss the structure of the highest weight NS super-moduli, define
the NS chiral vertex operators and postulate for them the existence of a braiding relation.
Section [}, which constitutes the main part of the present work, is devoted to an explicit
construction of the braiding matrix of the NS chiral vertex operators by relating it to an
exchange matrix of the screened, normal ordered exponential build up from the modes of
the chiral superscalar field. In the section [] we introduce the NS blocks and discuss their
braiding and fusion properties. Coincidence of the result with the fusion matrix “guessed”
in [R0] may be viewed as a proof of the validity of the bootstrap equation in the NS sector
of the supersymmetric Liouville field theory. Finally, appendix [A] contains some relevant
properties of the Barnes double gamma function and appendix [ is devoted to a derivation
of a Weyl-type representation of the screening charge operators.

2. Bootstrap in the N = 1 supersymmetric Liouville field theory

The N = 1 supersymmetric Liouville field theory (see [RI] for an exhaustive review) may
be defined by the action

Ssuer = [ (32 106 + 5 (600 +500) +2inb e + 2mPy2e )



where ¢ is a bosonic and 1 a fermionic field, u denotes a two-dimensional cosmological
constant and b is a Liouville coupling constant.

The superconformal symmetry of the SLET (as well an of any other N = 1 supercon-
formal filed theory) is generated by a pair of holomorphic currents 7'(z), S(z) and their
anti-holomorphic counterparts T(2), S(z), where T' and T are components of the energy-
momentum tensor while S and S have dimensions (3/2,0) and (0,3/2), respectively. The
algebra of the modes of T'(z) and S(z) is determined by the operator product expan-
sion (OPE):

T()T(0) = 55 + j—zT(z) + %aT(o) +oo
T@ﬂS@)zzi%fK@—%%@Sm)+-~, 2.1)
S(2)S(0) = 32763 + %T(O) I

The fields local with respect to S(z), i.e. with the OPE
_3
S(2)éns(0,0) = D0 2728 kéns(0,0)
k€Z+3%

form the Neveu-Schwarz (or NS for brevity) subspace in a space of fields of a given SCFT
on which we shall focus in the present paper. Together with the usual Virasoro generators
L,, defined by the OPE

T(2)¢ns(0,0) = Zzn_2L_n¢Ns(0,0),
nez

Sy, form the Neveu-Schwarz algebra determined by (2.1)),

[Lin, Lp) = (m —n)Lypgn + Em (m2 — 1) Omtns

12
m — 2k

(L, Sk] = —5—Sm+r, (2.2)

c( o9 1
{Sk,S1} = 2Lp1 + 3 k= — 1 Okt
It is convenient to parameterize the central charge c of the NS algebra as

3 2
Cc = 5 + 3Q 5

where in the case of SLFT the “background charge” @ my be expressed through the Liou-
ville coupling constant as
Q=b+0b L

In the space of NS fields there exist “super-primary” fields, realized in the supersym-
metric Liouville theory as an appropriately normal ordered exponents V,(z,Z2) = e®(2:7)
By definition they satisfy:

[Ly, Va(0,0)] =[Sk, Va(0,0)] = 0, n, k>0,
(Lo, Va(0,0)] = AV, (0,0), A, = %a(@ _a).



Each super-primary field is the “lowest” component of the superfield

Pu(2,0;2,0) = Vo(2,2) +0Mu(2,2) + O Ao(2,2) — 00V, (2, 2), (2.3)

where

Ay = [5—1/27Va}7 A, = [5—1/27Va}7 Vo = {5_1/27 {5_1/2,‘/@]},

and 6,0 are Grassman numbers. Global superconformal transformations (generated by

Lo, S, 1, L+ and their right counterparts) allow to express three-point function of primary
2

superfields in the form:

<(I>a3(23,93;23,ég)@a2(22,92;fz,éz)q)al(Zl,91;51791)>
= Zg212321 Zglzzgylz Z;fzgf <q)a3(00,0; OO,O)(I)[;2(1, 67 17 é)q)al (0707 070)>7
where v; = 20, — (Al + Ay + Ag), Zij =z — 2 — HZGJ = Zij — Giej,

1 1
O = —— (40 0 0 — —010203 ),
m(lz23+ 2231 + 03212 50102 3)

is an odd invariant of the global superconformal group and
D, (00,0;00,0) = Rll_l;I(l)o R2A3+2A3<I>a3 (R,0; R,0).

The three point function is thus determined by the superconformal symmetry up to two
independent constants,

Clas,az,a1) = (Vag(00,0)V,,(1,1)V,, (0,0)),

C(ag, az, al) = <Va3 (OO, OO)Vaz(lv 1)

<

a1
Their form in the NV = 1 supersymmetric Liouville field theory,

Tns(2a3)Tns(2a2) Tns(2a1)
Tns(a — Q)Yns(a142-3) Tns(azq3—1)Yns(azr1-2)
~ . Tns(2a3)Yns(2a2) Tns(2a1)
C b b - 2 C )
(as, az,a1) = 2i Co(a) Tr(a — Q)Yr(a1+2-3)Tr(a243-1)TR(A341-2)

C(ag, as, al) = C()(CL)

with 0a
Cota) = (i (%) 0+) 7 4sl0),

was first derived in [@] Here a = a1 + ag + a3, a119_3 = a1 + az — ag, etc. and the special
functions involved (Yns r(7), Gns.r(z) below etc.) are defined in appendix [A].

The super-projective transformations also allow to express a generic function of four
superfields (2.3) through the four-point functions of the form

<<I>a4 (00, 0;00,0)P,,(1,03;1, 0_3)<I>a2 (2,09; Z, ég)q)al (0,050, 0)> (2.4)



If we denote by F¢ [%3%2](z) and Fp [%8 %2](z) a pair (out of four) of an even and an odd

a4 al a4 ai
N = 1 Neveu-Schwarz blocks' then a special case of (2.4), the four point function of
super-primary fields

G4(Z= 2) = <Va4(oov OO)Vaa(lv 1)Va2 (27 E)Val (07 0)>7

can be presented either in the “s—channel”:

as

dag _ as a
G4(Z72) :/ j [C’(a4,a3,a5)0(as,a2,a1 ‘j:O [aiaﬂ( )|2
S

— CN’(a4,a3,as)C~'(as,a2,a1 \]-“0 2 aQ](z)ﬂ (2.5)

a4 ay

with S = + iRy, or in the “t—channel” decomposition:

d
Gy(z,2) = /ﬁ [C(a4,at,a1)C(dt,a2,a3 ’fe [ara2] (] z)‘2

i a4 a3
S

~ . 2
— Clas, ar,01)C(ar, az,ag) |75 [ 2] (1 = 2)[°] (2.6)
Here and in what follows we use a convenient notation a = Q) —a (notice that for a € %—HR
it is indeed the complex conjugate of a). If we now define a fusion matrix F by assuming
the existence of a relation between the blocks appearing in the decompositions above,

dat

as a2 a3 a2 al az _
f:;]s [a4 ai Z Fasat a4 a1 fcf [a4 ag] (1 - Z)? n=2¢0,
s p e,0

then the coincidence of the decompositions (B.5) and (2.9) may be recast in the form

das as a = a;
/ i (Fasat [ai aﬂ)T : C(a47 as, as) tT3 C(G’S?a??al) : Fasat [ai aﬂ
S
= C(ag,at,a1) - 73 C(ay, a3, az) id(ay — a}). (2.7)

where we denoted

. C(a3,a2,a1) 0 . 1 0
C(ag,ag,al) = < 0 CN’(as,ag,a1)> ) T3 = (0 _1> .

Coincidence of the s— and t—channel representations of the four-point correlation function,
or (equivalently) eq. (B7), constitutes the bootstrap equation for the super-primary fields.
Analogous procedure can be applied also to the other four-point correlation functions
appearing in (R.4), what results in the remaining bootstrap equations for NS sector of
the supersymmetric Liouville field theory.

1See [@, E] or section E for the definitions.



3. Chiral vertex operators

3.1 Neveu-Schwarz super-module

Let ¢,(0,0) denotes a NS superprimary field. States
va = ¢a(0,0)]0), (3.1)
obtained through its action on the invariant vacuum |0), with
L,|0) = S|0) =0, n>-1, k>-1,
are of the highest weight with respect to the NS algebra (P.9):
Lovg = Agvy, Lpvg=8Sva=0, n,k>0. (3.2)

We shall frequently write g instead of |0); this is consistent with (B.) since the unique
super-primary field with the conformal weight 0 is the identity operator, ¢q(0,0) = 1.
Denote by VI the free vector space generated by all vectors of the form

Va,NK = L_NS_KI/a = L—nj ce L_mS_ki ce S—klya s (3.3)
where K = {ki,ka,...,ki} and N = {nq,ng,...,n;} are arbitrary ordered sets of indices
ki > ...>ko > kq, 7%2...27122”1,

such that |K|+ |N| =k + -+ ki+ni+-+n; = f.
The %Z—graded representation of the NS algebra, determined on the space

Vo = P Vv, Vi=Cu,,
feiN

by the relations (2.3) and (B.2), is called the NS supermodule of the highest weight A, and
the central charge ¢ (to avoid making the notation overloaded we omit the subscript ¢ at
V). Each Vj: is an eigenspace of Ly with the eigenvalue A, + f. The space V, has also a
natural Zs-grading;:

Vo =V eV, Vi=pv:, V.=V,
neN keN+3

2(Lo—Aq)

where Vi are eigenspaces of the parity operator (—1)F = (—1) . Finally, there exists

on V, a natural, symmetric, bilinear form
(| )a + VaxV, — C,

uniquely determined by the algebra (R.2), normalization (v,|v,)s = 1 and the relations
(L)' = L_p,, (S;)T = S_g. In what follows we will usually suppress the index a at {-|-),.



3.2 The vertex

The NS chiral vertex operator NV (z), where A = (a‘;zal) and z € C, is a linear map from

V., = V1 to V3 which may be defined by the following conditions:2

1. NV (2) is a sum of an even (i.e. parity preserving) and an odd (i.e. parity reversing)

operators,
NWa(z) = NVE(2) + NV (2),

where NVE(2) © VE — VI and NWR(2) : VE — VT
2. Let 6 be an anticommuting variable,
0,0} = 10,81} = {0,V (2)} = [0, L) = [0,V ()] = 0.
Then

[Ly, NVA(Z)] = 2" (20, 4+ (n+1)As) NVA(Z),
(051, NVa(2)] = 2477 [0S0, NVa(2)] (3.4)

3. The commutation relations (B-4) determine NV} (z) up to two arbitrary functions of
the parameters ai, a9, a3. For 2z — 0 :

1 N°(as3,az,a1)

NVA(Z)Vl = As—B—Ay (Nc(ag,ag,al)yg + 22 oA S_%Vg + O(z)) )
3

(3.5)
so that

NC(CL3,CL2,CL1) = <V3‘NVA(1)V1>, No(ag,a2,a1) = <S_%I/3|NVA(1)I/1>.

We shall define a normalized NS chiral vertex operator Vj(z) to be the NS chiral vertex
operator with N®(as,as,a;) = N°(a3,as,a;) = 1. Equivalently, for any NV, (2) :

NVAP(Z) = NP(CLg,CLQ,CLl) VAP(Z)7 p=2¢e,0. (36)

The operator NV, (2) is naturally associated with the ground state vy € V. It is useful
to define a family of (generalized) NS chiral vertex operators enumerated by (and linear
in) vectors ¢ € V. If we denote NV, 4,(v2|2) = NV, (2) then, first of all,

9NVa3a1(5—1/2V2’Z) = [95—1/2=Nva3a1(V2‘2)] )
0
Nva3a1(L—1€’Z) = % Nva3a1(§’2)7 §E€Va. (3’7)

Moreover, for k € Z + %, k>3/2:

0NVa3a1(S—k£|z) = ﬁ <%)k_§ 95(’[0) NVasal (£|Z) ’
—5)!

2The basic facts on the vertex operators can be found in [ﬂ], @] and @] can be consulted for a clear
and extensive introduction to the subject. The presented formulation parallels the one used in [E]

w=z




where

05(0) Waa(€l2): = (30 05078 Wagu(€le) + MWaalel2) ( 22 08107 7H),

1<-32 I>—
WithlEZ—l—% and, form > 2:

Wasar(L-mé|2) = ﬁ (%)m_z T (w) NViyay(€]2) : ‘

w=z

with

:T(w) NVagm(f‘Z): = ( Z L, w_n_2)NVa3a1(€’Z) —+ NVagal(f‘Z)( Z L, w—n—2).

n<—2 n>—1

The state-operator correspondence above is build in a way which ensures that also the
operator-state correspondence,

VéEeV,: liH%]Vao(ﬂZ)I/o =¢,

holds.
Since we shall frequently use the generalized chiral vertex operator associated with the
vector S_j o1 it is convenient to reserve for it a special notation and write

NV¢13¢11(S—1/2V2|Z) = NVasal(*V2|z)'
It then follows from (B.4) that

(Lo Voo, (12)] = 27 (20 + (m + 1)) Wi (2]2),
(Lo MWy Gia[2)] = 2™ (20 + (m+ 1) (B2 + 5)) Wiy, (00]2),
(86 NV (v2]2)] = 2477 NV (sa]2),

{8k, <u2\z}: ks Nye | (sn2), (3.8)

asai azal

azal

)
8, V2, (ral2)] = 2578 (20, + Aa(2k +1)) N2, (1],
{88, NV, (Gaml2) f = 2873 (20, + Ao (2 + 1) NV2, (1]2).

asal asal
Consequently

NVasal(*V2| ) =
ZAs—A0—A1—3 (No(ag,ag,al)l/g + Z%(Ag + Ay — A1)N®(as, asg, al)S_%Vg + (’)(z)) ,

so that

Ny/p
Va3a1

(#12]2) = NP(as, az,a1) VL, (x12]2), (3.9)

asal



Rysunek 1: Graphical notation for the braiding transformation

Let us define a braiding matrix to be an integral kernel which appears in the operator
identity®

da, . P
Vaﬁas(§3‘z3)va2a1(§2’22) :/? Z Basau[gi%l} A Vaﬁau(§2’22)vjua1(53’23)7 (310)

S Ad=e,0

where € = sign(Arg z32) with sign(z) = +1 for z > 0 and —1 for z < 0, and in the case
relevant for the supersymmetric Liouville field theory S = % + iR. It follows from (B.§)
and the definition of V)£, (£]2) that every matrix element of V£, (&lzi)V,! ,, (§5]25) can
be expressed as a linear differential operator (in z; and z;) acting on a matrix element of
the product V£, (_vilzi)Vy! ., (_vjl2;), where _v; denotes vy or 1y = S_j/51. Because the
braiding matrix in (B.I0) does not depend on z and z3, it is then equal to one of the ma-

trices appearing in the braiding relations for the operators V£, (_vi|z;) and V]! | (_v|z;) :

da A 5
Vap4as (—V3‘Z3)Va2a1 (—VQ ‘22) = 2—; Z stau[_gi _gﬂ pn)\(; Va4au (—V2 ’ZQ)Vaual (—V3‘Z3)7
S A, 0=¢e,0
(3.11)
where, in order to make the notation uniform, we have chosen as the arguments of the

braiding matrix _a; rather then _v;.

4. Chiral superscalar

It turns out to be difficult to derive an explicit form or the braiding matrix just from
algebraic properties of the NS chiral vertex operators. We shall therefore construct in this
section (appropriately modifying the Teschner’s procedure for the Virasoro case) a rather
explicit realization of the NS chiral vertex on the tensor product of a free chiral scalar and
a free chiral fermion Hilbert spaces. With the properties of the braiding matrix derived we
will then proceed in section f| to a discussion of the braiding and fusion properties of the
Neveu-Schwarz conformal blocks.

4.1 Chiral fields
Let us define for o € R the chiral scalar field

@(0) = q+op+p<(0) + (o)

3For the rational CFT, where the integral in ) is replaced by a finite sum, the existence of the
braiding matrix can be proven, [ﬂ, @] For the N = 1 SLFT the assumption that a braiding matrix

satisfying () does exists will be justified by it explicit construction — the primary goal of this work.



where

The modes enjoy the usual hermitian conjugation

T T

p'=p, q'=q, a,=a,, (4.1)

as well as commutation
[CI, p] = i> [amy an] = m5m+m

properties, realized on the Hilbert space Hp = L?(R) ® Fg, where Fg is the Fock space
generated by the action of the creation operators a_,, n > 0, on the ground state Qp
annihilated by a,, n > 0.

The second ingredient we shall need is the (antiperiodic for ¢ — o + 27) chiral
fermion field

Y(o) = Z Yy e~ (4.2)
keZ+4
with the conjugation
Ul = Yo (4.3)
and anticommutation relation {1, 1;} = 0k realized on the Fock space Fr generated

by the action of ¢_; on the fermionic vacuum Qp, ¥rQr =0, k > 0.

Let H,, be the vector space generated by the action of the creation operators a_, and
1_, on the “ground state” 7, = |p) ® QO ® Qp, where p|p) = p|p), p € R. One can define
on H, a standard free field representation of the Neveu-Schwarz algebra,

1 1
Lo = 5@ +3P"+ D a-mam + X ki,

m2=1 k}%
inQ 1 1
Ln = <P + T) an + 5 Z An—mam + 5 Z kwn—kwlm n 7& 07
m;ﬁO,TL k)EZ-‘r%
Sk = (p + ZQk)wk + Z am¢k—my
m#0

with the central charge ¢ = % +3@Q? and the highest weight vector 7, having the conformal
weight £Q%+3p?. If we further define on H,, a bilinear form ((- | -}),, such that a normalization
condition {(77,|7,)) = 1 and the conjugation properties (f.1)), ([.3) hold, then (H,, (- |-),)
becomes isomorphic to the NS moduli (V,, (- |+)q) with a = % + ip.

Define now:

e a normal ordered exponentials:

1 1
E%(0) = ez%d ep<(0) qaop eocso>(0')egocq7

built from the chiral scalar in a way which assures their hermiticity for real «, and

— 10 —



e the screening charge:

o+2m

Qo) = [ dz v(@)E)

(o

In the present paper we are interested in algebraic properties of normal ordered exponentials

and screening charges. Therefore, we shall not discuss some of the properties — such as their

domain or self-adjointnes issues — which would allow to establish them as true operators

(see however a discussion on the parallel issues for the non-supersymmetric case in [[L1]).
Explicit calculations give:

(L, E%(0)] = &7 <_Z% 4 nAa> o), A, = %Q(Q ),

(Lo, th(0)] = 7 (—z% 4 n%) (o), (4.4)

and
[Sk, E*(0)] = —iae® (o) E¥(0). (4.5)

Moreover, if we take

Q=0b+b" (4.6)

then
|, 0(0)E (0)] = _% (e p(@)E" (@) (4.7)

and
[5000E (@)} = 20 (6 (o) (48)

what shows that Q(o) is a scalar under the transformations generated by L,, and Sk.

For real b the screening charge Q(o) is hermitian, its square is therefore positive and
[Q(U)ﬂt may be uniquely defined for complex ¢. This motivates the following definition of
an “even” and an “odd” complex powers of the screening charge: for s € C\ Z :

Q@) = (@)%, Q@) = Q) (Q%0) 7 (4.9)
and
(Q(0))e = (Q(0)); = (Q(0))*  for s €N.
Relations ([.4) — (£.§) then imply that chiral fields

g5’ (o) = E*(0) (Q(0)),,, p=e o0

transform covariantly under superconformal transformations.
As in the non-supersymmetric case we can define the Euclidean fields by analytic

continuation to imaginary time

g P (w) = et g P(g) e ho, w=T+1i0. (4.10)

— 11 —



The fields (§.10) on a complex cylinder parameterized by the coordinate w are related to
the fields g&”?(z) on a complex plane z = e via

1
g 7(w) = gl (2), Mg =a(Q—a).

Thanks to a simple dependence on q, the fields g ?(w) have simple commutation properties
with functions of p,

g (w)f(p) = f(p — il + bs))gd P (w).
This relation, the isomorphism (Hp, (| )p) = Va, (-| >% Lip) and equations (E4d) - (£9)

show that a restriction of g2"#(w) to H, provides a realization of a (unnormalized) super-
conformal vertex operator 8V/ | (vq|w) with a; = % +ip and a3 = a1 + o + bs.

4.2 Matrix elements

For the chiral field on the complex z plane let us denote:

M(CL??S‘al) = ((VQ‘ga27 ( )I; >>q - <V3’g a3a1(V2‘1)V1>a37

M*(az, slar) = (g] xg5> (1) Dplg = (va] BV, q,(x12|1)11) 0. (4.11)
where
gy (1) = {5—1/278;?’0(1)} , p= 7Q —iday, q= 7Q —i(a1 +ag +bs) = 762 —iag.

To compute these matrix elements we shall use a strategy similar to the one applied
by J. Teschner in calculating the matrix element of the chiral primary field in the non-
supersymmetric CFT [[LT].

Introduce two auxiliary fields:

together with their descendants g, (z), » = 0, 1. We shall need the following simple matrix
elements:*

(Tprivlgo(D)Tp)priv = (p +iblgo(DIp) = 1, {(p + ib]+go(1)[*p) = 0B,
and

2mi e~ T(1 + b?)

L(1+up8)(1+ b2 — b3) = My(B), (4.12)

(pler(V]*p) = (plx1(lp) =

with 8 = % +ip and where, in order to derive (f.19), we used (after a suitable deformation
of the integration contour) the integral representation of the Euler beta function.

4 As before, we shall suppress the subscript ¢ in the form {-|-)4; since in the adapted notation it is the
same as an argument of the “bra” it shouldn’t result in any confusion.
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Consider now conformal blocks:

U, (2)
P7(2)

T

(il & (2)gs* (1) [p1),
(Pl g, (2)gs* (1) [p1), (4.13)

where pj = p1 —i(ag+bs+b (r—1)) and where we have suppressed the “parity” superscript
p of g%7 since if we require that ¥,.(z) and ¥*(z) do not vanish identically it is uniquely
determined by the parity of g.(z) and *g,(z). We shall now evaluate in two different ways
the leading (most singular) terms in the expansion of ¥,(z) and ¥}(z) around z = 1,
arriving at a recurrence relation for the matrix elements (4.11)).

First of all, just from the definition of the operators g?(z) and *g%(z), one can compute
leading terms in their operator product expansions. For instance:

g0(2)gi(1) = EP(2)EY(D)(Q1)° =~ (2 —D™E*(1) (Q(1))° = (2 — D™gi"(1),
or, writing Q(z) = Q(1) + (Q(z) — Q(1)),

g1(2)g2(1) = E(2)QMDE(1) (Q())* +E~(2) (Q(=) — Q1) E*(1) (Q(1))°
~ e TMEY()EN (1) (Q(L) e (s — 1)gl (),

Thus we have:

qIO('Z) 21 M(a2 - b78|p1) (’Z - 1)ba2’

Uq(z) =3 e 2 M(ay — b, s 4 1|py) (2 — 1)792, (4.14)
and similarly:
* b * a
Vi) 22— M (a2 = buslpr) (2 = 1,
b

Ui (2) e a2 M*(ay — b, s+ 1|py) (2 — 1)72. (4.15)

Z:l B a2 — b
On the other hand, the Verma moduli V_j is degenerate: the vector

(L_lS_% + bQS_%)u_b

is null. Consequently, correlators containing any of the fields g, (z) satisfy the corresponding
null vector decoupling equations [fl, [[§]. Their forms® for the conformal blocks ([.1J) are:

1 dBY.(2) (22 —1)(20* — 1) d®>V,.(2)

b2 dz3 z2(1 — 2)b? dz?
b2 +2A; b2+2A,  2-—3b%+ 2A§2274 v, (z) (4.16)
22 (1—2)2 2(1—2) dz '
289(146) 2011483 | Aoy +(1—22)(b +82(1/2 - A, ) = Avga) T(z) = 0
(1-2)3 23 22(1 — 2)? " ’

A derivation can be found in e.g. [@, E]
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and

A3 (2) N 2(1 — b?)(1 — 22) d>Wx(2)

dz3 2(1—2) dz?
4 _ 72 2 _ e 4 72 (r) _ *(y
<b b +2I;2((1A1(1) )+ Agz)  5b +1)Z((21Aj . 7)+2> d\IIJZ( ) (4.17)
3(A1 — Ag) + A()+b2—1 (1-22) 9A,» —2A+(1 —
b ( 1 : 2(2(1 —2)? ) + 223(1 _12,()3 )) r(z) = 0,

where AL(K) = %afp (Q — al(f)) with

aflr):a1+a2+b(s+r—1),

and Ajys = A1+ Ay, AU, = AL+ Ay — A ete.
Let us start by analyzing the equation (f.16). According to [[I7, [l its solution is of
the form
U, (2) = 291 — 2)2°F(2), (4.18)

where F'(z) can be expressed as a linear combination of Dotsenko-Fatteev type integrals

Tagl) = (1= 5000 /dm /dtz ita) 4 ({8 — 1) (b2 — D] [t — 2)(t — 2] Jta — 11

(4.19)
with the integration contours C; = (—0o0,0},, C2 = [0,1], C3 = [1, 2], C4 = [2,00) and
1 b(aff) +ag —ap) 1 b(aff) —az +ay)
AT i _5 + 2 3 BT = —5 + 2 s
1 b(agf) +ax+a) o 1 v
= , - -7 4.2
C 5 5 +0b g 573 (4.20)

(]

In order to decide which solution of the differential equation ([.1§) corresponds to the
block (p}| g-(2)g?2(1) |p1)) let us note that we can present it in a form of a power series in
z around z = oo by inserting between the fields g,(z) and g2 (1) the projection operator
onto the highest weight state with the momentum ¢ = p; —i(ag + bs) and its (normalized)
NS descendants. The leading terms in these expansions read

Wo(z) =~ {(q—1b|lgo(2) |q) (al g5>(1) |p1),

zZ—00
1

Wi(z) = ga, (d&a(2)S 1 1a) (el Syes® (1) pa)
so that, using (.11)) and (E.13), we have:

(0)
Uy (z) = ./\/((ag,s\al)zb(“4 +b),

M (a

Uy (2) ) M*(ag, slay) 2. (4.21)

S0 oAl
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Monodromies (around z = oo) of all the terms in the expansion of ¥y(z) are equal and
determined by (f21)); the same is also true for Wi(z). On the other hand, out of the
integrals (f19), I22(2), I24(2) and I44(z) form (once multiplied by 241%(1 — 2)2%) a basis in
the space of solutions of (.16) with a monodromy matrix diagonal around z = oco. In fact,
from ({.19) we have:

144(2) ~ Z—b(a1+a2)+b(ag))+b) Iz,(LZO) (1 + O(z_l)) :

Z— 00

I(z) = 2"t I (14 0(7), (4.22)
where:
7o) _ T@T(=1 = Ag = By = Co — g)T (=1 = Ag — By — Co — 29)
B I(g)

y 1+ Co)T'(1+ Co+ g)
['(—=Ag — Bo)T'(—=Ag — Bo — g)’

(4.23)

I'(1+B)I'(1+Cy)
(24 A1+ B)I(=A; — B1 — 2g)’

and, comparing (.1§) and (£.29) with ([£.2]) we get:

73 = T(1+ A)D(=1 — Ay — By — Cy — 29) .

1
Up(2) = g M(az, s|ay) P (z — 1)ba2 Iy (2),
44
M. (gD
Uy (z) = % M*(ag, slay) 227 (z — 1)%92 Iy (2). (4.24)
2A( 7,

~

Another basis in the space of solutions of ({..1), with a monodromy matrix diagonal
around z = 1, is formed by I1;(2), I13(2) and I33(z). Obviously these bases are linearly re-
lated,

I =Y M,lI, 1€ {22,24,44}, 5 e {11,13,33},
7

and the matrix M,, is known, see [R5, [[§]. Using this and noticing that the leading contri-
bution in the z — 1 limit is given by the term proportional to I;1(z) we have:
L'(29)I'(=1— A9 — By — Co — g)T' (=1 — Ag — By — Cp — 29)
I44 z ~ I(l) =
( ) z—1 44 F(g)
F(l + B + Co)r(l + By + Cy + g))
[(=A0)I' (=40 — 9) ’
Ia(z) ~ T{) =T(1+ A)T(=1— A, — B, — C} — 29) (4.25)

z—1
" r1—g’1+B1+C)I'(1+B1 +Ci +g)
I'(1-29)L'(—A1 —g)T2+ A1+ B1+Ci1+g)
Substituting this result into ({.24) we get:

(1)

T

Vo (2) ~ —(4;) M(ag, slar) (z — 1)%2,
T Iy

M (a4)Z5y)

(c0)

~ M*(ag, slay) (z — 1)P2. (4.26)
- 2Az(11)124

\Ifl(Z)
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Comparing ([.24) with (.14) and using ([.12) we arrive at the recurrence relations of
the form:

2y
M(az — b, slay) = o) M(az, sla),
Tyy

) 74 2miasT(1 + b?)

M((IQ o b,S + 1|a1) _ eiwb(az—a
759 2A T (1 + b)) (1 + 12 — ba(Y)

M*(ag, s|ay).

Using equations ([23), (E29), (E:20) and the relations satisfied by the Barnes gamma,
function (appendix [A]) we thus have:

M(ag —b,slar) _ T'(1+4 Bo+ Co)l'(1+ Bo + Co + g)I'(—=Ao — Bo)I'(=Ao — Bo — g)
M(az, sla1) ['(=Ap)l'(=Ag — g)T' (1 + Co)I'(1 + Co + g)
 [Tns(2Q — 2a1 — 2as — bs)Ins(Q — 2a — bs)] ™

4.27
FNS(Q — QGQ)FNS (2@ — 2&1 — 2&2 — 2bs) ( )
PNs(QQ — 2&1 — 2(@2 — b) — bS)FNs(Q — 2(&2 — b) — bS)
Ins(Q — 2(ag — b))I'ns (2Q — 2a1 — 2(ag — b) — 2bs) '
and similarly:

M(a2 — b7 5+ 1’0’1) _ .—inb(ai+bs) 1 (@) _Q
M*(ag, s|lay) - 2F 2 bz

o [Fr(Q—as —bs) I (201 +bs) Tk (Q + bs) T (2Q — 20115 — bs) -1 (4.28)

I'ns(Q — 2as) '

« I'ns (@ — 2ag — bs 4+ b) I'ns (2a1 + bs + b) I'ng (Q + bs + b) I'ns (2Q — 2a142 — bs + b)
FNs(Q— 2a9 —l-Qb) ’

where a1412 = a1 + as.

To arrive at a second set of recursion relations we repeat the same steps for the blocks
U¥(z) : calculating from ({.1J) the leading behavior of W(z) for z — oo we identify the
appropriate solutions of the differential equations ([.17), then we express them in the basis
given by the functions with the monodromy matrix diagonal around z = 1 and compare
the result with the formula (4.15). This yields:

M*(az —b,sla;)  [TrR(Q — 2a2 — bs)I'r(2Q — 2a; — 2ap — bs) -1

= 4.29
M*(ag, s]al) PNs(Q — QQQ)FNs(QQ — 2a1 — 2a2 — 2[)8) ( )
FR(Q — 2(&2 — b) — bS)PR(QQ — 2&1 — 2(@2 — b) — bs)
FNs(Q — 2(&2 — b))PNs(QQ — 2a1 — 2(&2 — b) — 2b$) ’
and
M*(a2 —bs+ 1|a1) _ _ sa—imb(ai+bs) (@) e
M(ag, s|ay) - d 2 b
I'xs (Q — a2 — bs) I'vs (2a1 + bs) T'ns (Q + bs) T'xs (2Q — 241 — 2ap — bs)] ™
(4.30)
Ins(Q — 2a2)
y FR(Q—QGQ —bs+b)FR(2a1 +b8+b)FR(Q+bS+b)FR(2Q—2(11 — 2a9 —b8+b)

I'ns(Q — 2a2 + 2b)
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The solution of recurrence relations (J£.27)—(§.30) is not unique. Notice however that
— exactly as in the non-supersymmetric case — we can repeat the construction above
with b replaced by b~1. Moreover, direct calculation (essentially the same that leads to ([.12)) gives:

M(ag,O\al) =1 (4.31)

and

F(l — bag)
F(l + bal)l“(l —ba; — bag) '
If b is real and irrational, relations ([.27) — ([£32) together with the “dual” (b — b~!)
ones uniquely determine the matrix elements of the N = 1 supersymmetric chiral vertex

M*(ag,1|a;) = 2mia;e ™0 (4.32)

operators to be:

ag—aj]—ag

Miagslor) = |51 (75 ) o8] 7 el @ aiona (4.33)

2 2
" I'ns (Q + a1—2-3) I'ns (a143-2) I'ns (@ + az—1-2) I'ns (2Q — a142+3)
I'ns(@)T'ns(2a1)'ns (@ — 2a2)I'ns (2Q — 2a3)

and

az—aj—ag
b

M*(ag, s|ay) = 2 EP (% bﬂ 0 sz en)(Qesaaman) (4.34)

'R (Q+ a1—2-3) 'R (a143-2) TR (Q + a3—1-2) T'r (2Q — a14243)
I'ns(@)Ins(2a1)T'ns(Q — 2a2)T'ns(2Q — 2a3) ’

where we have denoted
a3 = aq + as + bs.

4.3 Braiding relations

Thanks to the relation between chiral fields g& #(z) and the (unnormalized) vertex operators
8V?. 4, (Va|2) the form of the braiding matrix appearing in (B.I1)) can be derived by studying
an exchange relation for the chiral fields.

Assume that for the chiral fields on a complex w cylinder at 7 = 0, i.e. g2 * (o), there

exist an integral kernel B such that the identity

Fn A )
gs; " (02)g5, " (01) Z/du(tlﬂh) > Bg(ahaz;?z?l) 5 B (o0)g (o), (4.35)
Ad=¢e,0

with € = sign(oy — 01) and the integration measure to be specified later, holds.
Since the parity of a product of chiral fields does not depend on their order,

(=1)lelFInl = (—1)AI+lel

where |e| = 0 and |o| = 1, we can discuss the “even”, (—1)IPITIl = (—1)A+10l = 1 and the

“odd”, (—=1)lPl+Il = (—1)A+19] = —1| cases separately. Introducing a shorthand notation
ap Lt to \PP €p Lty b2 \PP
B, = B (o ey 2)” 0 (B, = B (a0 2)” (4.36)
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with & = 0, 6 = e, we can write ({.35) in the form

ge " (02)g5) (1) = 3 /du(tl,tz) [B°°, & "(o1)esy " (02),

n=e,0

822 (02)ga 1 P (01) = Y /d# t1,ta) [B” 6} g (01)gh " (o2), p = e€,0,{4.37)

n=e,o

Our strategy in calculating the matrix B is again a suitable extension of the Teschner’s
technique. Suppose that o9 > o1, let I = [01,09], I. = [09,01 + 27|, I' = [o1 + 27, 09 + 27|

and define:
_ b
Q = /Idfc E”(z)y(x)

Q¢ = chx Eb () (x), (4.38)
Q. = |z El(z)p(z) = —e™ 2P Q,.
Since
E*(2)E7(y) = e~ B8 (y)E (x), (4.39)
we get:

Eal( )Eaz( ) ewralag Eag (0_2)Ea1 (0,1)7
Q( )Eal (Qc + Q;) Ex (0_1) — E™ (0_1) (e—iwbal QIC + e—3z’7rba1 Q;) ’
Q( )Eag( ) (Qc + QI) Eo2 (0_2) — E2 (0_2) (e—iﬂbaz QIC + eiﬂbazQI) )

We can thus write:

g2 (02)gel (1) = E*2(02)E™ (o) ™2 (QF + ™M Q))5 (QF + Qo))

ggh ( )g%% ( ) — Ea2(0.2)Ea1 (0.1) eiwalaz—iwbtlaz(QIc_’_e2i7rba2QI)§\1 (Qlc_’_Qi)? (4'40)
The meaning of the r.h.s. of (J40) is clear for natural s; and tj, k = 1,2. Notice however
that for real b and purely imaginary «; and «as the hermiticity of Q;, Q¢ and Q] implies a
hermiticity of their (multiplied by real numbers) sums. The “even” and “odd” powers on
the r.h.s. are thus unambiguously defined (and thus the relation (f.4() is valid) also for

complex sp and tp. Moreover, for s; and t; being purely imaginary the operators on the
r.h.s. of (.40) are (formally) unitary. We thus take

Qag, Sk, tr € iR, k=1,2. (4.41)
It follows from (f.39) that the operators ({.3) satisfy a Weyl-type algebra:
QQ =™ QQ = —¢QQ, QQ = —¢QQy, QQ =¢Q Q. (4.42)

We can thus represent them in a form (see appendix [ for a derivation and a clarification
on the 2 x 2 matrix structure):

c bx 27rbt
Qf =1 e”e 2
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QI = 7y e%bx e—7rbp e%bxe%inbt’ (4‘43)
where 7 = ((1] (1)) , Ty = (_02- 6) and the operators p, x and t satisfy commutation relations
[p,x] = —i, [p,t] = [x,t] = 0, (4.44)

together with a conjugation properties x' = x, tf = —t.

The representation (f.43) and relations satisfied by special functions Gns, Gr allow
to arrange operators that appear on the r.h.s. of (.4Q) in a “normal ordered form”, with
the operator x on the left and the operator p on the right. To this end notice that:

c —Limbt Lox 0 1+ Z'e_Wb(p_it) Lok
QI +Qr=c¢e"2 tez (1 — je—mb(p—it) 0 ez
and since
Gns(z+b) = (1 + e”bz) Gr(z2), Gr(z+b) = (1 — e”bz) Gns(2),
we can write:
0 1+ e~ m(P=it)
1 — je—mb(p—it) 0
-1
_ 0 Gns(ip+t+ 4 +b)\ [ Grs(ip+t+ o) 0
Gr(ip+t+ 95 +b) 0 0 Grlip+t+))

From (J.44) we see that for an analytic function f :

e f(p,t)e”™ = f(p+ia,t),

so that

1 0 L4ie™™P=)\ 4 , o\ [ 0 e , oVl
e2 (1 _ ,L'e—wb(p—it) 0 e2™ = Gy (Zp +t+ ?) e 0 Gy (Zp +t+ ?) )

where we denoted
~ [Gns(z) 0
Gulz) = ( 0 Gr(z) )"

Our definition of “even” and “odd” complex powers, ([.9), thus gives:
1 i —1
(QF + Q) = e 2™ Gy (ip+t+§) 1, G, (ip+t+9)
1, X -1
= e Gy (ip+t b+ §) 1, Gy (ip e+ §)
with 1o = (39) and 1, = (%§) . Similarly:
1. -1 i
(QF + Q)% = " e 3™ Gy (—ip+t bty + §) 1a Gy (~ip+t+%),
and

(QIC_’_e—2i7rba1Qi)f)2(QIc_’_QI);1 — eb(81+82)x e—%iﬂ'b(sl-i-sg)t
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-1 )
X Gy (—ip+t—2a1 — bsy — bsy + %) 1, Gy (—Zp—l—t—20¢1 —bsy +%)

x Gb(ip+t+bsl+%) 1, Gb(z‘p+t+%)_,1

(QIC + e2i7rba2 Ql)g\l (QIC + Q;)gz — eb(t1 +i2)x e—%iﬂb(tl—i-tg)t
. Q . Q -1
x Gy (Zp—l—t—|—20é2—|-bt1 + bty + 7) 1, Gy (Zp—l—t—l—QO&g—l—btz—l-j)

X Gy (—ip+t—biat @) L Go(—ip+t+$).

Since p and t commute we can evaluate the action of both sides of ([.37) on a common
eigenstate of the momentum p (with an eigenvalue p; € R) and t (with an eigenvalue
7 € iR). Conservation of the momentum gives

t1+1ty = Ss1 4 89 def S
and the integration measure thus reads du(t1,t2) = 6(¢t1 + ta — s)du(t1)du(te). Define:

Ay =p1 — 2iy —ibs, By =-—p1, Cr=i(ar —Q/2), ps=p1—i(ar+bsy),
A2 =p1 — 2i0£2 — ibS, Bg = —DP1, 02 = ’i(ag — Q/Q), DPu = P1 — i(OéQ + btg). (4.45)

It turns out to be convenient to express the functions Gng r through their “cousins”

Sns. R, see appendix []. Denoting

[ Sns(z) O
S (2) _< 0 SR(z)>

and using the reflection property Sy (2) Sp (Q — 2) = 1. we get:

g?;’p(02)g?11’n(01)|p:p1 = E®2(gy)E% (o) " e TPils2—s1)— meszaﬁmb 2_#82
t=71

xSp(§ +idi—7)Fy $71(Q —iCy +ips—7) Sy 1(Q — iCy — ips—7)Fy Sy(§ +iB1-7),

T : ZTF 17T 2
gt0¢117 ( )g?;% (0.2)"3:1,1 — EQ2 (0.2)Ea1 (0.1) ebsx eprl(Sz—Sl)"rlﬂ'al(XQ_ 2b t§+TbS2 (446)
be( +zA2+T)FAS NQ — iCy + ipu+7) S; (Q — iCy — ipu+T) ngb( +zB2+T)

where:

-1 i
1 0 1 0 10 0 ex
F — (s 1 i = F = 9 F - i .

Let us further denote:

Sns(Q/2 +iA; 4+ 7)Sns(Q/2 +iB; + 1)

[NN] ~ Sxs(Q —iC; + ip+ 1) Sns(Q — iC; — ip+ 7)
39 (pr) = Sr(Q/2 +1A; + 7)SNs(Q/2 + 1B + 1)
BN T Sas(@ —iCi+ ip + )SNs(Q — iCy —ip + 1)’
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e.t.c. and define:

‘ Py ¢ oy ‘ ey ooy
®0H(p7) = <I>E1) G (7)), PlpT)= <I>E2) iz ) (p,7),
[RR] [N¥] (R &) (NN
(4.47)
oy ooy . Ty eTopy
‘1’(1)(17, 7) o Zpl)  EZgU (p,7), ‘1’(2)(2977'): Zp? T2 g2) (p,7)
RN RN RN RN
(R3] [N (R3] [RR]
It follows from ([£.44) that (f£.37) hold provided the relations
in’ ps’ o /d,u t2 —% (bt2)2+mpibta @?2) (pu’,r) . [B’YH—}T (448)
are satisfied, where
2
ix = %(sl ) + wp1bse — imay (ag + 2bsg)

Notice that we have traded (.35) — a relation between unitary (for the parameters satis-
fying (.41))) operators — for a relation between meromorphic functions. At this point we
can analytically continue ([.4) to a “physical” values of the parameters,

ay € % +iR,  bsy, bty € —% +iR, k=1,2. (4.49)

For ay, s and tj satisfying (f.49) all the parameters defined in (f.45) are real. Since
forx e R:

|Sxs (Q/2 +iz)| = [Sr(Q/2+iz)| = 1,
we get for A;, B;,C; € R, 7 € iR :

o L 0 t &0 def
((I)(l)(Puﬂ')) "I’(l)(p/uﬂ') = (‘I’(g)(puﬂ')) -<I>(2)(p;,7') = O(pu,py; 7)-

Explicitly:

OPus P 7)% = O(Pus Py 7)°%
( Sns(ipuy — (1 — iC3)) >T< Sns(ipl, — (1 —iCh)) >
SNs(Q + ipy + (1 —iCy)) Sns(Q +ipl, + (17— iCy))
+< Sulipy — (1 — iCy)) )* ( Sulip), — (1 —iCy)) )
Sr(Q + ipy + (1 —iCy)) Sr(Q +ipl, + (1 —iCy))
= (ipu N 7 — iC2) (7 — iC [N]iph,) + (ipu [5| T — iC2) (T —iCy | ipy,) ,
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where in the last line we have borrowed the notation from [R0], section 5.2. In the same
notation:

e 2 O(pu, Pl T)% = €2 O(pu, Ply; T)C%
= (ipu x| 7—1Ca) (T —iCy |§] iph,) — (ipu 5| T—iCa) (T —iCy [X] iph, )

and, using [R(] (equations (5.12) and (5.13)) we arrive at the orthogonality relation

Z'OOdT 1
— O(pu,p;7) = 3(pu — pl,) Le. 4.
i (P Pui 7) sinh 7bp,, sinh wb—1p, (Pu = Pu) (4.50)

—100

For fixed pi,; and s; we see from ([£4H) that the only parameter which changes with
ty is py. In view of (.50) it is therefore convenient to take du(t2) = dp,. We thus get
from (4.49):

iood,r 5 T 5 B e—%r(btz)?-i-ﬂplbtz—ix - T
/7 ((I’(z) (puyT)) . (ﬁ(l)(ps, —7') = Sh Thpy Sinhﬂ'b_lpu [B } (4.51)

with bty = i(pu — pl) — Q9.
There is a point concerning (.5]) which requires some care. Since Sys(z) vanishes at
x = ( the functions ‘
<I>EZ:):}(Q +iy+71), yER,

with Sxg(Q+iy+7) in the denominator have poles at the imaginary 7 axis. Relations ([.50)
and ([L.51) are thus not well defined unless we specify the way the integration contour avoids
these poles. To do this recall that the “physical” values of the parameters ([.49) were
obtained in a process of analytic continuation from the purely imaginary values assumed
in ([41). It is immediate to see that if (f.41]) holds, then the discussed poles are located
to the right from the imaginary axis. During the analytic continuation process no pole is
allowed to cross the integration contour, so we take the contour in ([50) and ([.51]) to the
left from the poles coming from the Sﬁé factors. This coincides with the assumption made
in [B0] to derive the relation (£.50).

To present the un-normalized braiding matrices in the final form let us introduce one

more set of (the most commonly used) variables:

a1=§+ip1, az = ai, a3 = o, as=%+ip87 au=%+ipu7 ay = az +az + ai + bs.
(4.52)
In these variables:
Q. . o
5+1A1—a4—a3+a2, 5—2A2—CL4+CL3—6L2,
Q+i3129+iB2ZQ—al,
2 2
Q —iCy +ips = as + az, Q —iCy —ips = Q — as + a,
Q_ic2+ipu:au+a3a Q_iC2_ipu:Q_au+a3
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and
Z'g(btg)z —mpibta+ix = iw(A4—|—A1 —Ay—As+as(as—ay) —ag(a4—as)) e 1Paga, (a3, a2),
with A; = A(a;) = 1a;(Q — a;). Using the relation

sinh(7bp,, ) sinh(7b~'p,) = %SNS(Z(LU)SNS@Q — 2ay,)

and noticing that [BY"] written as a function of ax, k = 1,2,3,4,s,u is nothing but the
unnormalized braiding matrix we get from (f£.51):

Sns(2a,)Sns(2Q — 2a,) [dr

4 ’l Qs Oy,

gRY,+ [a3a2] _ .iPasay(a3,a2)
Bilaw [a4 aJ = eTastuy

fael(r)  (4.53)
with .
I.al822) () = (80 (pe 7)) - BT (pu7)

and where, as in ([.36)), we used the notation

Explicitly:
NNNN RRRR | INNNN RRRR
o= (AN TIRERE R - R
1
PNNRR O +HIRERN]D ~RRRR)™ ~ [RRRF] ™)
and
CINRNR | IRNRN NRNR RNRN
ro - (RN AR R BAEE )
1 )
NRRR| @O+ [RERN®  RERRIO+i RNRN] @)

where the abbreviations

[NNNN} (r) = Sns(aq — az + ap + 7)Sxs(a1 + 7)Sns(as — a3 + ag + 7)Sns (@1 + 7)
NNNN Sns(@y + as + 7)Sxs(ay + as + 7)Sxs (as + az + 7)Sns(@s + ag + 1)
( )
( (

[N RN R} (7) = Sns(aq — az +ag + 7)Sr (a1 + 7)Sns(as — az + ag + 7)Sr (a1 + 7)
NNNN Sns(@y + az + 7)Sns(ay + a3 + 7)Sns(as + az + 7)Sns(@s + ag + 1)’

e.t.c. with a; = @ — a; have been applied.
Using the results of P it is straightforward to check that the functions o7 (p,7T)
satisfy a completeness relation of the form

/dps SNS(2a5)SN48(2Q — 2as) (‘P?i)(ps,T))T ' @Efi)(p&/\) (- M) 1. (4.55)
0

From ({.59), (fE50) and ([£5F) it then follows that

atas La4 al AsGqy Lagq a1

[e.9]
[ e aimac s smy ] SR [50]) = 0n—p) Lo
0
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This equality implies that

—2mi(As+A1-Ar—As) gRY,+ [a2a3] _ gRY,— [a2a3
e ( ) Batas [a4 a1] - Batas [a4 111]

and allows to write

ime(AutA1—Ag—A
BB6, [0 o] = oSt A “) BB, [62 2] (4.56)

with € = sign(oy — 01) and

100
SRY [ag az] — ei7r(a3(a4—au)—a2(a4—as)) SNS(2au)SNS(2Q B 2CLu) /d_T J [a3 ag} (7_)
asaqy lag ai 4 7 asQy La4q a3 :
—1%00
To derive the other three braiding matrices which appear in (B.11) we use the realization
of the vertex operator 8V, (¥v4|w) provided by the chiral descendants

*957°(0) = {S_1/2,95°(0)} = —iap(0)gs*(0)
and

*gg%(0) = [S-1/2,95°(0)] = —iap(0)g5* ().
Keeping in mind the definitions (f.53) and ({.45) we have on the one hand

do A 5
9527 (02) w9 00) = [ G 9B, 71 v o) (o),

2 1R A0
and on the other

9;1227,0(0-2) *g;llﬂ?(o-l)
= _Zalg?227p(0-2) 1/}(0-1) 9?11’7](0-1)

= (-1 )""(—ialw(ffl)) 957" (02) 9o (o1)

do Be . A )
= (—1)l / - BS.a, [0292177, 5 (—icatp(o1))gnt N (o1)gr2 " (02)
Q—HR
da k)
D[S e (1] 2 o) o)
Q-H]R
da
D[S B, ) <N g (o).
9 iR
Together with (f.54) this yields
B0, [02 702"y = (=17 8By 0, [5352]7, - (4.57)

Similar calculation also gives

. [*ZZ zﬂpn)\é _ (_1)|77\ €B,.a. [gigﬂpn)\g (4.58)
and
EByya, [0 702 )" 5 = (—L)leIi e, [as o)l (4.59)
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4.4 The normalized braiding matrices

Equations (f.33) and (f.34) can be presented in the form

N(a3, a,a1) = 2" [2 ( Q) } e’s (as—az=a1)(Q-asFaz—a) (4.60)
Fn(ag +a; — ag)rn(ag +a; — ag)rn(ag +a; — ag)rn(dg +a; — ag)
I'ns(@Q)'ns(2a1)I'ns(Q — 2a2)I'ns(2Q — 2a3)

where for 7 = e (n = o) on the Lh.s. we have n = NS (resp. n = R) on the r.h.s. From (B.§)
we get:

B € [ag CLQ}U _ Ng(a4va27au)ng(au’a3’a1) 8Re € [ag ag]n
AsQqy Lag ay p Ng(a as’ S)Ng(a a2’ 1) [lsllu a4 ai p?

RO € [agag}n _ Ng(a az, U)Ng(a CL3,CL1) gRO, € [agag]n
ot AL Ng(ay, as, as)Ng (as, az, ay) waulagorl 'y

so that using results from the previous subsection together with ({.60) we arrive at the
explicit expression for the braiding matrix of the normalized chiral vertex operators defined

in eq. (ET0):

BY:€ [a3 az} — esiﬂ(A4+A1—As—Au)

as az]
asaqy Lag a1 ’

QAsQy [a4 al

v =-e,0, €=sign(Argzs — Argzo),

100
I'ns(2as)I'ns(2Q — 2as) dr
A'ns(Q — 2ay)Tns (2, — Q) J i
—100
Me  [maln 4lpl T'y(ay + as — a2)Tp(ay + as — a2)Tp(ay + a4 — a2)Tp(ay + aa —/2%91)
deduiaa @l p AT (as 4 ag — a3)Ty(as + as — a3)ly(as + as — az)ly(as + aa —\a3
Iplaw +ar —a3)ly(@y + a1 — a3)ly(ay + a1 — a3)ly(ay + a1 — az)
Iy(as + a1 —a2)Ty(as + a1 — a2)Ty(as + a1 — a2)Ty(as + a1 — as)
o [as aﬂn _ Fp(au +a4q4 — CLQ)FP((_IH + a4 — ag)Fp(au + a4 — ag)Fp(C_L + a4 — ag)
Aslu LG4 a1 p Fn(as “+ a4 — ag)I‘n(c‘zs + a4 — ag)l“n(as + a4 — ag)Fn(a + a4 — a3)
Dplay + a1 — az)ls(au + a1 — a3)lp(au + a1 — a3)l's(au + a1 — as)
Fﬁ(as + a1 — ag)Fﬁ(c‘zs + a1 — ag)Fﬁ(as +a; — CLQ)Fﬁ((IS +a; — CLQ)

where, in analogy with (f£.54),

9

The form of the other braiding matrices can be worked out from ([.57) — (£.59) after taking
into account (B.9). We get:

Ng)\((lzl, az, au)Ng(aua as, (11)

N¢(aa, as, as)NE(as, az,a1)

_ (_1)‘7” N (a47a27au) g(CLU7a37al)
= ( )‘77| Basau [gi gf]npj\(gy

€ [ag *az] np

_ gRE¢ [ag*ag]np
asay Lag ai A6

asaqy lag ai Y

3 gBE‘ az a21MpP_ (462)
N¢(as, a3, as)NE(as, az, a1) o La 0159
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and similarly

€ [*“3 ag}np 5= (_1)|P| B¢ [aa az}fw

asaqy L as a1 A Asy Lag a1 A6
B [0 a1 " = (CDMTTBG 0, (65515 (4.63)

4.5 Special braiding relations

In deriving the relations presented in section f] the limit a; — 0 of the braiding matrix will
be of a particular importance. To calculate it let us first of all note that lim0 V(ai|z) is
a1 —

the identity operator so that
dim Vola, (val22)Varo(vi]21) = 67 Voo (2] 22)-

Consequently
7o
BZsau |:ZZ [(1)2j| 2\ = O
and in the remaining cases the limit lim0 B4, [23 2] is well defined only for ay = az. In
a]—

effect we only need to calculate

lim B , [ “2}6)\ = lim Bg,q, [2292]*

a1_>0 a2aq, Lag a1 lll—>0 a4 ai A\
and
. o az a2]%  — 1: a3z az]o¢
all@o Basa [a4 aJ A= alllglo Basa, [a4 al] I

From ([.61) we have:
M32au [Zi Zf]e)\ =
2|>\‘ I‘,\(au + a4 — CZQ)F)\(C_ZU + ayq4 — ag)F)\(au + a4 — CZQ)F)\(C_ZU + a4 — ag)
PNS(CLQ +a4—a3)PNs(EL2 +a4—a3)FNS(a2 +d4—a3)FNs(EL2 +d4—a3)
F,\(au +a; — ag)PA(ELu +a1 — ag)r)\(au + a1 — ag)r)\(@u +a; — ag)
I'ns(a1)Tns(Q + a1 — 2a)I'ns(a1)ns (@ + @1 — 2a2) ’

For a; — 0 the factor I'yg (al)_l present in this expression tends to zero and the braiding
matrix is non-zero only for such values of the remaining parameters for which

100 dT e a3z az]€
/ T Jazau [ai aﬂ A (4'64)

—ico

provides a compensating, singular factor. Since components of Jg , [43%2](7) are mero-
morphic functions of 7 (with the location of poles determined by the values of a;) we can
deform the integration contour in (fl.64) such that it “keeps away” from the moving with
a1 — 0 poles, arriving in the limit at a non-singular function of a1, as, as, a, and, in view
of the discussion above, at a vanishing braiding matrix (cf. [B], Lemma 3). However, this
procedure fails if the integration contour gets “pinched” between a pair of moving poles.
In such a case we have to deform the contour past one of these colliding poles and the

singular contribution can appear from the residue.
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In our case the only pair of colliding poles appears in

{NNNN}( ) - SNs((_l4 — a3+ as + T)SNs(al + T)SNs(a4 — a3z +as + T)SNs((_Il + T)

NNNNJV/ Sxs(@u + @3 + 7)Sns(au + a3 + 7)Sns(2a2 + 7)Sns(Q +7)
a summand of Jg, , [ Zﬂee , where a pole at 7 = —a; (initially to the left of the contour)

coming from a factor Sxg(a1+7) approaches a pole of a function Sxg(Q-+7)~!at 7 = 07 (to
the right of the contour). The residue at 7 = —a; gives a contribution to (Jf.64) of the form

Sns(@q — az + ag — a1)Sns(as — az + ag — a1)Sns(Q — 2aq)
Sns(Gy + az — a1)Sns(ay + a3 — a1)Sns(2a2 — a1)Sns(Q — ar)

I(al) =2

-1

(in the course of calculating I(a;) the formula lim, .o xSxs(z) = 77" was used) and

I'ns(2a2)I'ns (2Q — 2a2)

lim B, [% %)%, = & lim I(a1) MS,,, [%22]°,

aj—0 20w laa a1 A4FN3(Q — 2au)FNS(2au — Q) a1—0 a20u 104 a1
o I'ns(ag + ay — a2)'ns(ag + @y — a2)I'ns(@s + ay — a2)I'ng(@g + @y — az)
A Tns(as + az — az)Tns(as + a3 — a2)Tns (s + az — ag)Tns (@ + az — az)
I'ns(ay — a3)I'ns(@y — a3) lim I'ns(ay — a3 + a1)I'ns(az — a, + ax)
I'ns(ay — ay)T'ng(Gy — ay) a1—0 2I'ns (Q)I'ns(2a1)
Since r
Ay = % + Z’pu; az = % + ip?»: iﬁ%xFNS(w) - Ni_(Q)y
we have
. I'ns(ay —az+ai)ns(az —ay +a1) 1 ay
hm = — hm B — = 5 —
a1—0 QFNs(Q)FNs(Zal). T a1—0 a% + (pu - p3)2 (pu p3)
and
Jim BYo, 361, = 0R0(pu = po).

Calculations leading to

. o a3z a0
Jim B, Lo 6]y

are analogous. This time the colliding pair of poles appears in the function

; [RN RN} (1) =i Sr(Gs — az +ag + 7)Sns(ar + 7)Sr (a4 — a3z + ap + 7)SNs (@1 + 7)

NNNN Sns(@y + a3 + 7)Sns(ay + as + 7)Sns(as + az + 7)Sns(@s +az + 1)’
being a summand of J¢,, [ 2] OO . Computing the residue at 7 = —ay and taking the limit

a; — 0 we get:

alliﬁlo BgZGu [gi g?]o)\ = 0y 5(pu - pg).
Summarizing:

Jim Baa, [5383)7 5 = 1710507050 0(pu — ps) (4.65)

or equivalently
Ve oy 3|23) VI ((v2]20) = il QE 07 VL. (vo]20) ViE o (v3] 23), (4.66)

— 27 —



where
92%22 _ ei7re32 (Ag—A3—A3) )

Finally, the relations between “starred” and “un-starred” braiding matrices, eqs. (4.69)

and ([£63), together with (f.6) and (f.66) give:

alliglo Basan [gi *Zf]pn)\(s = (= 1)‘[)‘ alllm Basan [gi Z?]pnx(g = (_i)|p| 5§5770550 3(pu — p3),
Jim Baya, [7663)77 5 = (~ 1) lim By, [3332]7 5 = 716367650 6(pu — ps),
alllm Bazau [*gi *gf]pn)\g = (_1)\ﬁ|+\77| hE}O Bazau [gi gf]pnxg = _(_i)‘ﬁ‘ 6§67]055o 5(pu - p3)7

or equivalently:

Vi 0y (v3]23) Vol o (s2|22) = (=) Q55 6™ V2, (k| 22) ViE o (s 23),
V0 s (03|28) Vil o (val 22) = ilP QG5 6™ VP, (va] 22) Vi (403 23),

asas
VP 0 Geus|23) Vil (k1 |22) = —(=0)IP1 Q3 6™ VP . (k1 |23) V2 o (ki3 23).

5. Braiding and fusion properties of the Neveu-Schwarz blocks

We shall define, following [[If], four even and four odd NS conformal blocks

Farl=ai a1 (2) = (| Vo (s D)V o (vl 2)1n). (5.1)

This choice is motivated by the observation that the knowledge of (f.1)) is sufficient (once the
relevant three point coupling constants are know) to compute all the four-point correlation
functions in the NS sector of a given N = 1 SCFT. Inserting between the chiral vertices a
projection operator onto the basis of Vs formed by the vectors v 1 (see (B.3)) we get:

a3 _a a4 a3 a IK,JL asas a
}—az [_ai _a? Z poé 13 ()S V47_V37VS,IK) [GZS] Poo z2 02(VS,JL7_V27V1)‘
IK,JL

Here the three-linear form p is defined by

P22 (&3, €2, &1) = (€3] Vazan (§2]2)61), &eVi, 1=1,2,3,

[GZJIK’JL is an element of the matrix inverse to
(Ga) 1k g1 = (vsixlvsaL)

and (=)l = (1)Kl = (—1)IEl,
Notice that

(va| Vil o (13| 23) Vil o, (L2 z2) Vay ol vi] 21)vo)

= (va|Vaha (o V3’Z31)Va5a1( vol221)v1) (52)
Ag—_ Asz—_A Ag—_ As— Ags—A
= 2314 : o < | a4a5 V3‘1 asal( VQIZ)V1> - 2314 : e ﬁz [ Zi Zﬂ (2)7
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where z = % with z;; = 2z; — 2z, *A = A + % and _A which may stand for A or *A, and

(Va|Vasar (Valao(_vs|zs2)val22) Vayol_v1]21)v0)

= (V4| Vaga, (V3 a(_v3l232)v2|221) _11) (5.3)
= Y p% % G v vk, )G 0% 83 @ (v g, _vs, 1)
IK.JL

_ —imesa(Ar— Ag—Aog+1 A4— _A3—Ax—_ Ay a1 _a -1
= emimenb bt k- (1),

where €39 = sgn(Arg z32). To derive (b.9) and (b.3) we used the state-operator correspon-
dence

g = Va0(£|0)V07 5 € Vm

which follows from (B.H) and the definition of the generalized chiral vertex operator, the
fact that L_; acts (see (B.7)) as a generator of translation in z and consequently

Va3a1 (52 ‘Z) = eZL71 Va3a1 (62 ’0)6_2L71 )

and the identities

P2 U (£3,69,6) = 2R EITAEIZACG) pas sz a6y £1) Lo& = A(&)S,

pggazzabl(y&y2 IKa_Vl) ( 1)|I|+‘K|pggt?aot(yg,_yl,VQJK), |K| €N,
_1 1
pggazzaol(y?HVQIKu ) ( 1)|I|+‘K| 2pggazla02(y37_yluy27IK)7 ‘K’ €N+§7

which are also easily derived using definitions from the subsection B.3 and the commutation

relations (B.§).
With the help of relations (B.11]) and (f.2) it is immediate to arrive at the s —u braiding
relations satisfied by the NS blocks. We have:

—As+_Az+_Ao+A
Fal [Fa3=02](2) = 25 =0T (o [V (sl 231) Vo, (Lval201) 1)
“Aut Ast_AotA, [da
o R / S B, ™, ([ VE Ll Ve ol )on)
p=e,o
da
A —_Az—_Az—-A -
= i tam / S B ™, ) (7).
p=e,0

Special braiding relations (4.66) allow to derive a generalization of the Euler’s relation
satisfied by the hypergeometric function. W have:

F[8302] (z) = 25y TASFASTRA VT (1] 23) VI o (v2]22) ViE o(v1|21)vo)

= il gimear(Bemfemdu) Rk BekBa =B (1) |V (vs]23) V(1] 21) Vol val22)v0)

Ag—Az—Ag—Aq
212
7 [a3 a1 _—Z
> %s [a4 a2:| < ) :

_ il gimen (Ag—As—Ay) (@
232

231

If we exclude the situation when arg z; lies between arg zo and arg z3 then

€91 = —sign(argz) = —e
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Rysunek 2: Graphical notation for the elementary fusion transformation

and we get
Fol@@)(z) = illemimBemfamfu) (1 — o)fa-fomfambu g (e 1] (27). (5.4)
Similarly

A Ag+A3z—A
Fl [a3xa2](z) = 23! T2 TR |V (vs]23) Vi, (312 22) Vi o(v1]21) 1)

= gl eimen(Be=Bo=Ba) L QuteBat Qo= (1) |V (15]23) V], (1] 21) VS (¥l 22) o)

Ag—A3—xAa—A1
_ 7l pimear (As—Ap—Aq) [ Z32 1 [as a1} #12
=tv7e as Llaq *ag
231 232

where

A8 @) = vl

a4 *as aqas

o [ i) (@) + (COME [ (),

(V3’1)Vaﬁsa2(1/1‘x)5_%7/2> = FI
and with the same restriction on the arguments of z;, ¢ = 1,2,3:

Fale ] (z) = il emime@emBambn) (1 — p)BumBamefa=n g o8 0] (1) (5.5)

It shouldn’t be difficult for the reader to derive the Kuler’s relations for the remaining
four blocks.
Denote graphically the identity

Vagar (72122) Vayo(vi]21) 00 = € X1V o) (Vo] 201 )11 = Vaso (Vagar (2] 221)v1]21) w0,

which expresses the operator-state correspondence for the chiral vertex operators, as on
the figure f], and consider the sequence of “moves” represented graphically on the figure -
It results in an identity:

(va| V!, (V3] 23) V! o (va|22) Vi o va|21)vo)

= MO (vl Vi o (v3]23) Vol o0t |21) Vil va 22 o)

dCLt
Bularas]” ) (alVilia (1120 Vi ay(vs|23) Viyolvel z2) o)

— smloer
= ¢"MQ -
s21 %

g +iR
— Z’WQ%II / day Beat, [43 1]
S

2 asatlaq a2

o VAV 11200V (Vi a(vslzs2)val22) vo) (5.6)

Q .
?—HR
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a, as | aj 0 a, as | az 0 a, a; | ap 0

a; a4, @ a a4y /

4 az 0

2 4 2y 25

Rysunek 3: Moves which lead to s — ¢ braiding

. day .
= i, / 5 Baalaal™ (=) (a|Vif 0, (Ve alwslza2)alz2) Vid, vl 21)vo)

£ +iR
and with the same restriction on the arguments of z;, i = 1,2, 3, as above:

922211 Of12 Res1 [a3 a1]77’7 — eiﬂ(631—621)(A4+A2—A3—At) B a3 a1]7777

[ —B [ag a1]7777
412 Zasatlaq az pp asatlayg as — Pasat

as a2l pp*

(5.7)

op

Using (b.3) and (5.4) we get

(Val Vg ay (Vw3282 12| 22) Vi, (] 21 )ro) = @2 (1mes)lPl zfamfe=fe=fa g [a1 021 (1 — 2)

so that if we define (as in section fl) the fusion matrix F through the relation

Q. a da a a a a
FLEE=21@) = [ S Faw 300", 7 R =2]0 - 2 (53)

2 4iR

then (5.9), (6.4) and (p.7) yield

Fasa [22]7 = o5 (Inl—es21p)) Bo.al[22 ] . (5.9)
If we choose in the complex z plane a cut from z3 to +oo, then
€32 = sign(argzs — argzs) < 0
and the formula for the fusion matrix acquires its final form
Fasac [2222)" = o5 (Inl+lol) Bu.al[i2 )" . (5.10)

Similarly, application of the sequence of moves (p.G) to the correlator

(va| Vol (v3|23) V! o (2] 22) Vi o v ]21) o)
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followed by the use of the Euler’s formula (5.5) gives:

Fou [12°02)7 = e St B, [t (5.11)

Note that the form of the fusion matrix (f.10) with the braiding matrix given by ({.61)
coincides® with the one conjectured in [R(]. This, in view of the properties of this matrix
proven in [P{] which include:

e its invariance under the substitution a; — Q—a;, i = 1,2,3, 4, s,t (which is equivalent
to the statement that the fusion matrix depends on a; only through conformal weights
A(a;)) and under exchange of its “rows” (i.e. (as,a2) < (a4,a1)) or “columns” (i.e.

(a3,a4) < (az,a1));
e calculation of its values at the limit ay — —b and

e the fact, that the matrix (b.1() satisfies the orthogonality relation (R.7),

provides a rather strong argument for the consistency of the SLFT.

With the result above it is straightforward to derive the form of the fusion matrices for
the remaining blocks (p.]) and to check (using the orthogonality and completeness relations
for the functions ® defined in eq. ({.47)) that they indeed possess the properties which
ensure the validity of the bootstrap equations for the remaining four-point NS correlators.

6. Conclusions and prospects

Results from the quantum Liouville field theory have a number of applications, to name
only the continuous approach to the two dimensional quantum gravity, where the choice of
conformal gauge for the two-dimensional metric leads to the theory of coupled Liouville and
matter fields (7] or, more recently, [B§), quantization of Teichmiiller space of Riemann
surfaces [R9] and a relation between Liouville field theory and the Hy WZNW model [Bd -
B4] which resulted among others in a proof of the crossing symmetry of the latter theory.
More specifically, the fusion matrix of conformal blocks was shown [B3, to be related
to the three point correlation function of the boundary operators in the Liouville theory,
what allowed for a full solution of the boundary SLFT.

Some of these results were demonstrated to possess counterparts in the supersymmetric
case. The supersymmetric Liouville gravity was discussed already in [B7] (see also [Bg] for
some new results on the subject); in [BY| a link in the spirit of [B4] between the supersym-
metric Liouville field theory and the WZNW models on the OSP(p|2), p = 1,2, supergroups
was constructed and used to derive an explicit formulas for the two- and three-point func-
tions in the OSP(1|2) WZNW model. Once the fusion matrix of the NS blocks is explicitly
known, it seems not to be difficult to calculate the (so far unknown) three point function of
the boundary operators in the NS sector of the supersymmetric Liouville theory and check
a crossing symmetry in a (sector of) the OSP(1]2) WZNW model as well.

5One needs to take into account a factor 4/"1~1°! which comes from a different normalizations of conformal
blocks and a transposition which follows from a different definitions of a fusion matrix adapted, cf. eq. (E)
from the present paper and eq. (2.6) from [E]
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In this work we did not touch upon the second, Ramond sector of the SLFT. Due
to the square root singularity of the correlation functions of the Ramond fields and the
tensor S(z) the analysis of the conformal blocks in the Ramond sector is considerably
more difficult than in the NS sector and the four-point conformal blocks with the external
Ramond states seem to have been defined and discussed only recently [[f(]. In spite of this,
it seems not to be difficult to modify the constructions of the present work to include the
Ramond sector as well, completing in this way a proof of the consistency of the N =1
supersymmetric Liouville field theory [E].
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A. Special functions related to the Barnes double gamma function

For Rz > 0 the function I',(x) has an integral representation of the form:

o0

2

dt et — e~ F (% _ :E) % — 7
log Fb(ﬂ?) = /7 (1 — e_tb) (1 . e—t/b) o 2¢l N t
0

['y(x) is (up to the normalizing factor Fb_g,l(Q/ 2)) a special case of the Barnes double

gamma function Iy, ., (z) with w1 = wy 1 — b, being an analytic continuation of the func-

tion -
0
log Ty, o (w5 8) = 5 Z (mw1 + nws + 2)7°
m,n=0

to s = 0. Both expressions explicitly show an important self-duality property,
Iy(x) = Tp-1(z).
I'p(z) satisfies functional relations

V2 o3
I'(bx)

Ly(z), Ty (:13 + b‘l) = %Fb(az), (A1)

and can be analytically continued to the whole complex x plane as a meromorphic function

Fb(l’ + b) =

with no zeroes and with poles located at x = —mb — n%, m,n € N. Relations (A1) allow
to calculate residues of these poles in terms of I',(Q); for instance for z — 0 :

[(Q)

2rx

Fb(x) = +O(1).

It is convenient to introduce

x) = )= —t— z) =e 2%Q-2)gG, (x )
Ty(z) o @@ —2) Sp() Q1) Gy(x) Sp(z), (A.2)
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and, borrowing the notation from [6], to denote:

Fas(2) = T (g) r, (w ; Q) 7 Pa(e) =T (x + b) r, (:17 +2b—1> |

2
tas@) =T (3) 1 (552) . e =1 (550 T (‘”” *21’_1) L (A3

etc.
Using relations ([A.1)) and definitions (A.2), (A.3) one can easily establish basic prop-
erties of these functions. In the paper we used:

e Relations between S and G functions:

Grs(z) = (e~ T7(@2) §g (), Gr(z) = e T¢e T9QDgp(x), (A4)

_inQ?
where (; = e s

Shift relations:

Gns(z+b%1) = (1+eiﬂb*1x) Gr(z), Grlz+b*!) = (1_eiﬂb*1x) Gns(z). (A.5)

Reflection properties:

Sns(#)Sns (@ — x) = Sr(z)Sr(Q —z) =1

Locations of zeroes and poles:

Sns(x) =0 & r=Q+mb4+nb™t, mnecZsy, m+nc2z,
Sr(z) =0 < z=Q+mb+nbt, m,n € Zxy, m+nec2Z+1,
Sxs(z)"'=0 < z=—mb—nbl, m,n € Zsog, m+n € 2Z,
SR(x)_l =0 < z=—mb—nbl, m,n € Zxy, m+nc2Z+ 1.
e Basic residue:
. 1
ilil%) z Sns(z) = - (A.6)

B. Weyl-type representation of the screening charges
Positive operators (Q¢)? and (Q,)? can be represented in a form
(QIC)2 _ e2bu’ (QI)2 _ e—27rbv

where u and v are hermitian on H = Hg ® Fr with the standard scalar product. From the
braiding relation

Q)% (Q)? = e ™ Q)% (QF)?, (B.1)
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we get
[u,v] = 4. (B.2)

Let us now define hermitian operators x and s such that

Uu=X——5
2 b
s

TV = —x—§s+7rp

and additionally [s,x] = [s, p] = 0. Taking into account (B.J) we get

[x,p] =i
and
( 10)2 — e2bu — e—ﬂbse2bx — (e—%ﬂbsebx)27
(QI)2 — e—27rbv — enbse2bx—27rbp — (e%wbse%bxe—nbpe%bx)2.
so that
c __ ¢ —L1abs bx _ Lobs Lpx —mbp Lpx
Qr = ne 2™ Q; = ne2™%e2™e e?
where
n,x] = [n,s] = [n,p] = %x] = [n°s] = n%p] =0
and
{nnt=0, n*=@)P=1 (B.3)
The Hilbert space H has a natural Zy grading given by (—1)F, where
F=> v
keN+1

is the fermion number and H = H* @ H~ with (=1)F|yF) = £[*) for [*) € H*E. The
screening charges are odd with respect to this grading,

Qr, QIC : Hi = 'H:F,
and we can represent them in a form
c |¢+>> — —%7rbs bx( 0 774§O> <|¢+>>
“ (w-> S e o )\ )
Wﬂ) _ %nbs %bx —7bp %bx( 0 7760> <‘w+>>
“ (ww T T e 0 )y )

The conditions (B.3) together with the hermiticity of Q—s thus gives

=) =)

up to a similarity transformation. Replacing s — it we get ([L.4J).
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